منابع مشابه
Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملSymmetric Polynomials
f(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n)) for all σ ∈ Sn. Example 1. The sum T1 + · · ·+ Tn and product T1 · · ·Tn are symmetric, as are the power sums T r 1 + · · ·+ T r n for any r ≥ 1. As a measure of how symmetric a polynomial is, we introduce an action of Sn on F [T1, . . . , Tn]: (σf)(T1, . . . , Tn) = f(Tσ−1(1), . . . , Tσ−1(n)). We need σ−1 rather than σ on the right side so this is a...
متن کاملComputing the generator polynomials of $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes
A Z2Z4-additive code C ⊆ Z α 2 × Z β 4 is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z2 and the set of Z4 coordinates, such that any simultaneous cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z4[x]-module Z2[x]/(x − 1)×Z4[x]/(x −1). Any Z2Z4-additive cyclic code C is of t...
متن کاملCounting Roots of Polynomials over $\mathbb{Z}/p^2\mathbb{Z}$
Until recently, the only known method of finding the roots of polynomials over prime power rings, other than fields, was brute force. One reason for this is the lack of a division algorithm, obstructing the use of greatest common divisors. Fix a prime p ∈ Z and f ∈ (Z/pZ)[x] any nonzero polynomial of degree d whose coefficients are not all divisible by p. For the case n = 2, we prove a new effi...
متن کاملNotes on particular symmetric polynomials with applications
This paper presents some applications using several properties of three important symmetric polynomials: elementary symmetric polynomials, complete symmetric polynomials and the power sum symmetric polynomials. The applications includes a simple proof of El-Mikkawy conjecture in [M.E.A. El-Mikkawy, Appl. Math. Comput. 146 (2003) 759–769] and a very easy proof of the Newton–Girard formula. In ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carpathian Mathematical Publications
سال: 2018
ISSN: 2313-0210,2075-9827
DOI: 10.15330/cmp.10.2.395-401